首页 如何成为会员 意见反馈
主办 沈阳鼓风机研究所 /《风机技术》杂志社
   新闻  |   技术纵横  |  论坛  |  沈阳鼓风机研究所  |  风机协会  |  质检中心  |  风机标委会  |  风机技术杂志  |  企业商铺  |  供求  |  产品  |  书籍  |  招聘
当前位置:中国风机技术网 → 技术纵横 → 风机讲座

完全可逆地铁轴流通风机气动设计综述*

李永胜 张运伟/大同电力机车有限责任公司    

摘要 :在广泛查阅国内外资料的基础上,从气动设计角度出发,对地铁风机的气动设计要求、完全可逆风机专用翼型、可逆风机流型的优化设计以及目前在可逆轴流通风机设计上新进展进行了较全面的分析和总结,对可逆轴流通风机下一步的研究问题 提出了一些建议。

关键词:地铁;可逆轴流式通风机;气动设计

中图分类号:TH432.1    文献标识码: B

Review of Aerodynamic Design of Fully Reversible Axial-flow Fans in Subway

Abstract: On the basis of extensively consulting referenced papers, a comprehensive analysis and review are presented in this paper from the point of aerodynamic design. The topic covers the specific airfoils used for fully reversible axial-flow fans, the optimization of the flow whirl distribution and blade profiles, and the new development and trend of the fans. Furthermore, some proposals for the future research have been put forward.

Key words: subway; reversible axial-flow fan; aerodynamic design

0  引言

  城市地铁交通是世界各国解决大型城市公共交通的主要途径,目前在我国正得到大力发展。 我国有近20个城市完成地铁建设立项,更多城市正在积极规划。 地铁系统中的通风空调的耗能可达地铁系统总能耗的50%[1] ,其中风机又是通风空调系统的主要耗能设备,而且无论寒暑,地铁风机都必须每天运行且时间长达20h以上。另外,地铁通风系统事关防火安全,一直得到国际上的高度重视和不断研究[2-3]

  目前国内的地铁通风系统的风机从通风模式和防火安全角度需要,要求地铁风机能够迅速完全反风,由于设计研究难度大,至今公开发表的研究文献还较少。本文在全面查阅国内外文献的基础上,结合笔者自己的工作,就地铁风机气动技术方面的发展现状和趋势作一简要综述 。

1  地铁风机的主要技术要求与基本结构

  可逆轴流通风机在地铁上主要有两种运行模式[4]:(1)作为隧道事故/冷却风机,主要用于地铁区间通风,列车阻塞、火灾时的通风和排烟,并根据运行模式的要求进行正转或反转运行;(2)用于车站公共区空调通风/区间通风系统。风机可通过送、回管路对车站公共区空调通风,当需要区间、夜间通风时,通过风阀转换实现对区间的通风换气,以满足区间通风性能要求。该类风机兼容了车站及区间火灾事故发生时的通风。

  地铁的特殊工作环境和特点给地铁风机的设计提出了特殊的技术要求:(1) 防火要求和通风模式的需要,地铁风机要能够满足反风要求,而且要安全可靠;(2)为满足列车火灾时的通风,地铁风机还需要满足耐高温要求;(3)由于列车运行的阻塞效应、正常和早上、晚间对隧道的通风清洁等多种工况要求,地铁风机的管网阻力变化很大,经常会在旋转失速流量区间工作,所以,地铁风机要防止喘振;(4)风机要解决高效低噪、电机防潮等基本问题。

  地铁轴流通风机最典型的要求是风机能提供反向通风,而且为了保证地铁运输安全,担负防火功能的地铁风机必须能可靠和便捷地实现反风。 曾经有人提出采用普通单向轴流通风机通过在基座上转动180°来实现反风的发明专利 [5] ,也有人提出采用动叶直接反转180°的方式来实现反风的实用新型专利 [6] 。但都由于结构过于复杂,保养不便,在实际运行中不可靠而没有得到任何应用。目前常用的地铁风机基本结构与普通风机一样,即采用 B5 型内置电机,电机外的风机内筒具有和轮毂一样大小的直径,风机内筒(电机筒)由沿圆周均匀分布的静叶支撑在风机外筒上,而风机转子以悬臂支撑方式安装在电机伸出端,这样只需要通过电机反转就使得动叶反转,从而实现反风,结构简单可靠。但是为了保证完全可逆运行,风机动叶必须采用特种的反向对称翼型设计。

  地铁系统的防火要求需要风机整机能耐150℃高温1h以上。与普通消防排烟风机不同的是,在地铁火灾工况下,风机周围都是高温烟气,不可能有新的并低于环境温度的空气被引到电机周围来为电机降温,这就要求电机本身要有良好的耐高温性;其次,叶片材料、电动机、轴承润滑油脂和软连接等的选用都要充分考虑高温下的运行性能。

  至于防喘振要求,一种比较好的做法就是将适用普通轴流通风机的防喘振环[7] 加设在地铁风机动叶片两边。防喘振环(也称分流器)是一种环形的带有若干小导流片的装置,其环内的小导流片可以将进口气流进行一定的回流放空,而且具有自适应能力,从而可以使风机特性曲线在失速区的大范围内保持稳定。就笔者实际开发地铁风机产品的经验看,这种方法可以保持流量大范围变化时,压力一直随流量减小而增高。从有限的资料看,加设防喘振环后,风机效率将下降2%~4%。

  地铁可逆风机除了要满足以上特殊要求外,还需要风机效率尽量高,特别是地铁风机作为地铁交通系统中主要的耗功设备,数量大,全年运行,因此,高效可逆是地铁风机最基本的要求。目前国内外对地铁风机气动性能研究的文献相对较少,研究也不充分,以下将对地铁风机特殊的气动问题以及最新的进展情况进行介绍。

2  完全可逆地铁风机的翼型研究情况与进展

  地铁轴流通风机的关键技术是风机要能完全可逆运行,这就需要采用专门的翼型才能达到。从理论分析可知,地铁风机要想通过动叶直接反转达到完全反风,其动叶的基本翼型就必须沿弦长中心反向对称。目前国内外研究和应用较广泛的是S型翼型,此种翼型的特点是翼型的中弧线呈S型。国际上对S型翼型用于水轮机进行了一定的研究[8-10] ,其中弧线由两段抛物线组成,翼型的厚度分布有的是沿弦长中点完全对称,有的采用普通翼型厚度分布。国内李超俊、魏百锁等人对S型翼型用于可逆风机叶片的设计率先进行了研究[11-13] , 先后设计出3种用于可逆风机的翼型:(1)双圆弧S翼型CS-4, 其S型中弧线由两段相切的圆弧连接而成,试验测量得最大升阻比(Cy/Cx )max=20.8 ,最大升力系数Cymax=0.87 (未进行翼型有限翼展升阻力修正);(2)双头双机翼反向对称翼型DORMOY-S40, 它是由两个相同的原始翼型DORMOY反向对接而成,其中弧线呈S型,翼型相对拱度f/L=3.24%,最大迎角为9°时有最大升力系数C ymax =0.9(未进行翼型有限翼展升阻力修正);(3)摆线S型对称翼型BX-S396,它是通过利用摆线低阻特性可降低噪声,增加升阻比的特点设计而成。此S翼型相对拱度f/L=3.96%,最大迎角为12°,对应最大升力系数C ymax =0.89,最大升阻比(Cy/Cx)max=30.9 。限于那时计算技术和计算机性能的限制,上述翼型性能只能靠试验研究,因此当时只能在理论分析的基础上,根据直觉设计出几种性能较好的翼型进行试验研究,研究很不充分。

  1999年,席德科等人[14] 通过计算生成可逆翼型坐标,然后采用流场计算的方法进行了可逆风机叶片的翼型研究。通过对5种不同可逆风机翼型的数值计算和试验测量,优选了两种翼型,获得的最大升阻比为25。

  2002年,杨波等人[15]在仔细分析上述S型翼型研究的基础上,认为上述所有可逆翼型的最大升力系数偏小,升阻比不大,于是提出采用组合叶栅思想另辟蹊径。所谓组合叶栅就是通过充分利用和合理选择现有的、成熟的(对称或非对称)翼型,通过采取特别的、正反向叶片组合的方法来大幅度提高叶片的性能指标(即升力系数Cymax、失速迎角值αCymax ) 。通过对其设计的组合叶栅详细的叶栅性能试验,发现组合叶栅内的流体流动与普通叶栅的流动不同,有自己的特有规律,而且在一定的重合度和栅距比情况下,组合叶栅气动性能明显优于其基本翼型组成的单列叶栅。

  地铁风机专用翼型其实可以看作翼型弯曲角度为零的一种特殊叶片,其升力完全是靠叶片进气冲角产生的,而不像普通翼型那样靠叶片弯曲角产生,而且,从笔者主持设计的几个地铁风机系列产品看,设计的高效地铁风机的动叶稠度都较大,叶根稠度可达1.5~1.7,叶顶稠度也达到0.5~0.8。但是,上述文献中为地铁风机开发的专用翼型还都是基于孤立翼型设计方法,吹风试验数据也都是在孤立翼型状态下进行,按孤立翼型的升力、阻力系数整理,与实际产品开发要求有一定差别。

  另外,目前国内外都没有发表对两维的反向对称翼型的优化设计研究,而通过对高效二维翼型的进行参数化建模优化,研究建模的关键参数和影响因素,是三维动叶优化设计的基础。

  综上所述,对可逆地铁风机专用翼型还需要在叶栅条件下,进行两维多种不同翼型参数化建模和优化的研究,为进一步优化叶片,提高风机效率奠定基础。

3  地铁风机的流场计算和优化设计

  1991年文献[16]在国内率先开展了可逆轴流通风机的研究。该文献采用最优控制理论,以动叶出口环量沿半径的梯度变化为控制变量,在扣除叶片流动损失和出口周向速度动能损失的前提下,对单叶轮转子风机的流型进行了优化,然后,按照孤立翼型设计方法,选择可逆风机专用翼型的升力和攻角测试结果,设计开发成功了双向轴流通风机。采用此 专用翼型进行叶片成型,实测风机正向运行时的压力系数为0.0724,效率为76.4%,反向运行时压力系数为0.070,效率为70.0%,基本上达到了风机正反风性能相近的要求。限于当时的计算条件,整个设计还是按照传统的孤立翼型设计方法进行的,没有对该风机的三维粘性流场进行验证计算。

  2003年文献[17]在国内率先利用商用计算流体力学(CFD)软件FLUENT对地铁风机内部流场进行了全面的三维粘性流场计算和分析,计算区域包括整流罩、动叶和支撑电机的导叶,采用三维定常流场计算,并与试验结果进行了对比,结果符合良好。

  随着计算技术的进步,对可逆轴流通风机动叶的设计方法也在不断的进步。2005年文献[18]采用现代优化设计技术优化设计了一台地铁风机的动叶叶片。该文首先 提出了一种构造对称S型叶片的方法,就是利用NACA4系列翼型,把后半部分去掉,将前半部分叶型旋转180°后当做后半部分,就得到S型基本翼型,在此基础上做出一条S母线,结合基本翼型得到S型翼型,然后以叶片各个截面的S型翼型的最大拱度、S型母线、叶片扭角和叶根安装角作为自变量,通过正交试验,经过75次数值试验,优选出效率最高的叶片,最终获得叶片的流动效率达87.67%的优化结果。但是,该文 献 没有考虑支撑电机的导叶对风机性能和流场的影响。

  2006年文献[19]对某可逆地铁风机流场进行计算时发现,由于支撑电机的导叶存在,导致可逆风机正反转性能不一致。为此该文专门设计了具有一定安装角度的导叶,使得风机正转时,相当于前导叶加动叶的风机模式;而风机反转时,相当于动叶加后导叶模式。其具体的设计方法是:首先以等环量规律设计出初始叶片;然后以叶片安装角、叶片数、叶型为自变量,以风机的效率为优化目标函数,进行转子的优化设计;再根据转子的流场计算结果,进行静子的优化设计;最后将转子和静子进行合理匹配,直到达到设计要求为止。

  以上文章是笔者查阅到的国内全部公开发表的有关可逆轴流通风机的设计优化和流场计算的典型文献,国外文献一篇都未查到。其它由同一作者写出的类似文献不再一一列举。

4  新型地铁风机及其进一步发展方向

  笔者在为多家企业开发可逆地铁风机的过程中,发现了与文献[19]同样的问题,即虽然使用了由完全反向对称翼型成型的动叶和支撑电机的导叶,但由于动叶加导叶的方式使得地铁风机的流道结构不对称,导致了可逆风机正反风性能不一致,而且在试验测量中发现,采用正转方向为动叶加支撑导叶模式的风机效率高。为了仔细查明原因,笔者首先对试验测量的风机进行了数值计算,计算的正反风结果与测量结果一致,这证明电机支撑导叶的存在对提高风机效率是有益的,为了进一步提高反风效率,同时也使得风机正反风性能更加一致,笔者提出在完全可逆风机的动叶两边设置两列平行于轴向的导叶的发明专利[20] ,在某企业地铁风机样机测试中,已证实了该专利的有效性。

  为了深入探索该发明提高地铁风机效率的机理,笔者专门设计了一台高压大流量地铁风机并对其进行了详细的数值研究,发现在保证计算区域和动叶转子等各种可比参数完全一致的前提下,动叶两端加平直对称导叶的风机计算全压效率比单叶轮风机提高近10%,全压也相应明显提高了。流场分析表明,安装导叶后效率和全压提高的主要机理是导叶的设置大大降低风机出口气流在扩散筒内的流动距离,从而减小了流动损失,同时导叶还可以回收一些动叶出口气流的旋绕动能。

  但是,数值计算结果也显示,下游导叶出现了流动分离,这是为了不干扰进口气流,上游导叶需要采用平行于来流的直板或翼型导叶,这就导致同样形状的下游导叶总是处于大冲角下,流动从后导叶进口就发生分离,因此动叶出口气流周向旋绕动能的回收效率非常低。由于地铁风机动叶出口气流的旋绕动能可以占到设计压力的15%~22%,因此通过抑制导叶分离,进一步回收旋绕动能,将明显提高这种新型地铁轴流通风机效率。

  一般抑制翼型表面边界层流动分离方法是吹除或抽吸边界层,可通过外加能量或依靠自身的压差实现。依靠自身的压差这种自适应方法控制边界层分离,可实现设备的可靠性和结构的简便,笔者曾对离心通风机叶轮采用自适应边界层控制方法,并获得了设计流量和小流量下提高整机效率2%的好效果[21] ,在此研究工作的启发下,笔者设计了6种不同的翼型来对比研究通过形成射流来抑制头部流动分离的效果,两维数值计算显示无论是分离流动还是压力恢复系数都获得了明显改进和提高,现仍在进行数值计算对比和准备试验验证。

  需要说明的是,本专利的下游导叶流动分离与得到广泛研究的普通翼型边界层流动分离不同。地铁风机导叶的流动分离是由于大冲角引起的,发生在头部,而普通翼型是由于气流扩压度过大而导致翼型后部分离。

  此外,在为企业设计地铁风机的时候,发现主要结构参数不符合最佳普通轴流通风机选择规律、预计性能不好的地铁风机,计算出来的效率反而较高,这说明可逆轴流通风机和普通轴流通风机的主要结构参数的确定方面有所不同。轴流通风机的主要结构参数的选择对风机的效率起非常重要的作用,但目前国内外还没有有关可逆风机最佳结构参数选择的文献,需要进一步的研究。

5  结论与展望

  综上所述,随着我国地铁交通事业的发展,近年来我国对可逆地铁轴流通风机的研究也取得了明显进展,研究方法也从 20世纪90年代初的主要依靠试验的方法,过渡到现在数值模拟与试验相结合的方法,有些研究成果已在实际设计生产中得到应用。但相对普通轴流通风机的研究,对于地铁风机的研究仍然相当稀少,可在以下方面开展进一步研究。

  (1) 目前国内外已经提出了一些设计可逆轴流 通 风机专用翼型的思路和方法,但还没有采用现代流场计算技术进行基于叶栅思想的翼型参数化建模和优化的研究,这方面工作是地铁风机三维叶片高效快速优化的基础。

  (2)可逆风机的最优结构参数的选择问题还需要进行深入和全面的研究。

  (3)笔者提出的新型可逆轴流通风机的导叶由于来流冲角较大,导叶从叶片头部就发生流动分离,从而使导叶回收动叶出口旋绕动能的能力大大下降,如何采用边界层控制方法,改善导叶的分离流动是进一步提高这种新型地铁风机效率的关键。

参 考 文 献

[1] 李国庆.城市轨道交通通风空调系统技术发展新趋势[J].都市快轨交通,2004,17(6):5-7.

[2] Gabay D. Fire safety: a short history in the Paris subway. 2002 ITA Open Session: Fire and Life Safety[J]. Tunnelling and Underground space Technology 2002, 17:139-143.

[3] Carvel R O, Beard A N and Jowitt P W. The influence of longitudinal ventilation systems on fires in tunnels[J]. Tunnelling and underground space technology 2001, 16:3-21.

[4] 江杨.浅析目前国内可逆转轴流通风机在地铁上的应用[J].风机技术,2005(3):44-48.

[5] 申振华,等.地铁风机反风方法及装置[P].中国:发明专利,申请号03134066.0.

[6] 张春霖,须立民.可反风通风机动叶自动转角机构[P].中国:实用新型专利,申请号92236825.2.

[7] 梁锡智,吴海.被动控制装置改进轴流风机失速余度的试验研究[J].工程热物理学报,1997,18(5):562-565.

[8] RAVINDRAN. Influence of blade profiles on the performance of fully reversible axial pump-turbine[C]. Proceeding of the 6th Conference on Fluid Machinery, Budapest , Hungry, 1979:926-935.

[9] RADHAKRISHNA. Some flowstudies on s-cambered aerofoils[C]. Proceeding of the 6th Conference on FluidMachinery, Budapest , Hungary , 1979:917-924.

[10] BABY CHACKO, BALABASKARANV. Performance of s-cambered profiles with cut-off trailing edges[J]. Transaction of the ASME , 1994 , 116:522-527.

[11] 李超俊,魏百锁.一种用于可逆轴流风机的新翼型:双圆弧S形翼型的研究[J].机械工程学报,1992,28(4):37-41.

[12] 李超俊,赵德文,魏百锁.直接反转反风轴流风机的理论与实验研究[J].西安交通大学学报,1991,25(3):9-13.

[13] 魏百锁.摆线S型可反向轴流风机翼型的研究[J].流体工程,1993,21(1):9-12.

[14] 席德科,张仲寅,陆森林,等.可逆风机叶片的翼型研究[J].机械科学与技术1999(4):628-630.

[15] 杨波,欧阳华,钟芳源,等.组合叶栅的实验研究(一)[J].空气动力学报,2002:300-311.

[16] 李超俊,赵德文,魏百锁.双向轴流风机的优化设计与实验研究[J].机械工程学报,1991,27(5):54-60.

[17] 田铖张欢,由世俊,等.利用FLUENT软件模拟地铁专用轴流风机的内部流场(一)—对称翼叶片轴流风机[J].流体机械,2003,31(11):13-15.

[18] 黄典贵.S型叶片可逆式轴流风机的全三维优化设计[J].机械工程学报,2005,41(12):182-185.

[19] 谭春青,陈海生,梁锡智.完全可逆地铁风机的三维优化设计[J].机械工程学报,2006,42(9):169-173.

[20] 李景银,席光,徐忠.具有两列平行来流导叶的单叶轮完全可反风轴流风机[P].中国:发明专利,授权公告日 2007.10.3.ZL 200510042660.7.

[21] 李景银,田华,梁亚勋.轮盖开孔的离心风机流场研究[J].西安交通大学学报,2008,42(9):1117-1121.

新闻评论评论内容只代表网友观点,与本站立场无关!

  评论人:不锈钢网   打分:0 分  发表时间:2015-7-25 1:36:22
· 好文章,内容一气呵成.禁止此消息:nolinkok@163.com不锈钢网http://www.hbbuxiugangw...
  评论人:不锈钢网   打分:0 分  发表时间:2015-7-20 16:42:04
· 不错的文章,内容出类拔萃.禁止此消息:nolinkok@163.com不锈钢网http://www.hbbuxiugan...
  评论人:不锈钢网   打分:0 分  发表时间:2015-7-11 13:05:21
· 好文章,内容文从字顺.禁止此消息:nolinkok@163.com不锈钢网http://www.hbbuxiugangw...
  评论人:荷兰网   打分:0 分  发表时间:2015-6-4 15:08:16
· 不错的文章,内容点石成金.禁止此消息:nolinkok@163.com[url=http://www.zhongguoh...
  评论人:肉牛   打分:0 分  发表时间:2015-5-15 15:58:48
· 好文章,内容文风幽默.禁止此消息:nolinkok@163.com肉牛http://www.xmten.com/