首页 如何成为会员 意见反馈
主办 沈阳鼓风机研究所 /《风机技术》杂志社
   新闻  |   技术纵横  |  论坛  |  沈阳鼓风机研究所  |  风机协会  |  质检中心  |  风机标委会  |  风机技术杂志  |  企业商铺  |  供求  |  产品  |  书籍  |  招聘
当前位置:中国风机技术网 → 技术纵横 → 设计试验 → 离心压缩机

某带无叶扩压器的离心压缩机内部流动特性与稳定性分析*

刘海清* 张宏武 / 中国科学院工程热物理研究所    

Abstract
摘要:为了分析确定引起离心压缩机失稳的关键部件,结合实验数据,采用数值模拟的方法对某带无叶扩压器的离心压缩机在90%转速下的性能与内部流动进行了详细模拟。综合分析实验所得的级特性线、动态压力信号、叶轮和扩压器内部特征流动,结果表明无叶扩压器为造成该离心压缩机失稳的关键部件。通过比较无叶扩压器在最高效率点与近失速点下内部的流动特征,提出了可能的扩稳方法。
关键词:离心压缩机;径向叶轮;无叶扩压器;稳定性;喘振

中图分类号:TH452     文献标志码:A
Analysis of Flow Field and Stability in a Centrifugal Compressor with Vaneless Diffuser
Abstract:For the purpose of analyzing the unstable key components of centrifugal compressor, the performance and internal flow of a centrifugal compressor with vaneless diffuser was simulated under 90% speed by the numerical simulation method and combined with tested data. Combined with analyzing the stage characteristic curve, dynamic pressure signals and the internal charateristic flow of impeller and diffuser obtained by test, the result showed that vaneless diffuser was the key component of causing centrifugal compressor unstable. Based on comparing the internal flow characteristic of vaneless diffuser at maximum efficiency point and near stall point, the possible method for stability enhancement was pointed out.
Key words: centrifugal compressor; radial impeller; vaneless diffuser; stability; surge
0 引言
  叶轮及扩压器作为离心压缩机的核心部件,其性能及内部流动情况对整个离心压缩机的稳定性有着非常重要的作用。Emmons[1]认为失稳是来流攻角增大造成流动分离引起的。Eckardt[2]首次从实验上验证了Dean[3]提出的叶轮出口射流/尾迹类型的流动特征,并指出尾迹流是由吸力面端部的低能流体聚集形成的, 其对无叶扩压器进口流场具有重要影响。有研究表明,叶轮内部存在复杂的扭曲流动和二次流[4] ,叶顶间隙流对叶片通道内流动有着重要的影响[4-5] 。除了叶轮之外,无叶扩压器的进口绝对流动状态对扩压器的稳定性也有着重要的影响[6-8] 。Jansen[9]和Senoo[10-11]通过边界层分离来预测失速临界角的方法,得到了许多实验结果的验证,并且至今仍在工业界得到广泛应用。为准确得到影响压缩机失稳的关键部件,从而更好地拓宽离心压缩机稳定性,本文对某兆瓦级燃气轮机用离心压缩机采用实验和数值分析方法,在实验获得了部分转速特性及动态信号的基础上,用数值模拟的方法对该离心压缩机的内部流动进行详细数值分析,认为在90%转速下该压缩机失稳的关键部件为无叶扩压器,并在此基础上提出了改善压缩机稳定性的措施。
1 实验装置及测量
  研究的离心压缩机部件包括径向叶轮和无叶扩压器。叶轮为长短叶片结构,叶片总数为32,设计转速35 000r/min,扩压器采用等宽度平行壁结构,其它主要几何参数见表1。

表 1 叶轮及扩压器的主要参数

Table 1 Geometry Data

几何参数          数值

叶轮进口直径 /mm       169

叶轮进口轮毂比          0.379

叶轮出口直径 /mm       230

叶片数 / 个            32

扩压器出口直径 /mm      480

轴向宽度 /mm         15.8

  实验台架的主要结构如图1所示,包括空气过滤器、进气管、喷嘴流量计、整流段、实验段、出口管及节流阀。

  本文研究对象由500kW直流电机驱动;叶轮出口总温总压采用五孔探针测量;压缩机流量通过进口管路的标准喷嘴测量。
  压缩机内部一共布置了16根动态的Kulite传感器,其中叶轮进口前缘5mm处周向平均布置6个;扩压器内选取两个45°夹角的径向线,从进口到出口选取5个径向位置分别安装,布置图见图2。

2 数值模拟方法
2.1 湍流模型与求解方法

  计算求解定常的雷诺时均方程,湍流模型采用k-ε模型。运用了基于有限元的有限体积法,既保证有限体积法守恒特性,又吸收了有限元法的数值精确性。使用全隐式多网格耦合求解技术同时求解动量方程和连续性方程,提高计算速度和稳定性。
2.2 网格划分及边界条件
  将整个压缩机分为三个计算域,进口域、转子域和扩压器域。三种情况下的进口域网格划分相同,均为结构化网格。转子周向、展向及流向的网格数分别为46、56、62,总网格数为417 312,扩压器周向、展向及流向的网格数分别为46、56、78,总网格数为200 928。数值计算中通过增减网格数目,对计算结果进行独立性检查,结果表明上述网格达到了网格独立性要求。图 3为叶轮网格分布图。
  边界条件:进口总压、总温及气流角度,通过调节出口背压改变离心压缩机工况。

3 结果分析
3.1 特性线对比

  图4所示为n=90%及80%时级压比特性线的实验与数值计算结果对比图,总体而言数值结果与实验结果吻合较好。数值计算得到的堵点流量比实验大3.8%,这主要是在数值计算中依靠调节背压实现控制流量,而在实验中通过调节阀门开度控制流量所致。

3.2 动态数据分析
  将采集到的动态压力数据首先去掉直流分量,然后根据其所处的位置(叶轮进口按照旋转方向,从下至上;扩压器内部则沿着径向从进口到出口),依次绘制在同一张图内,然后进行分析。
  图5为压气机正常运转直至发生喘振过程中叶轮进口的压力脉动,可以看出在喘振之前压力信号一直较为平稳,不存在任何先兆信号或者信号的畸变,这就说明失速可能并未发生在叶轮内部。
  图6为压气机正常运转直至发生喘振过程中叶轮进口和扩压器不同径向位置的压力脉动图。在扩压器进口r/r2=1.087处,喘振之前出现先兆,同时在喘振发生瞬间,扩压器进口压力突然下降,波动幅度达到叶轮进口对应值的25倍,接着在r/r2=1.304处压力也突然下降,直至整个扩压器内压力出现崩溃,此时叶轮进口压力才出现波动。由此可认为,对于本文的研究对象,在90%转速下扩压器进口的流动状态变化强烈,失稳首先发生在无叶扩压器进口,扩压器应该是压缩机失稳的关键部件。

3.3 数值分析
  为进一步确定引起压缩机失稳的关键部件,将对最高效率点和近失速点时压缩机的内部流动进行详细模拟,重点关注叶顶区域流动及扩压器进口流动。
3.3.1 叶顶区域流动
  主流的轴向速度为正,而泄漏流的轴向速度为负,机匣壁面的轴向剪切应力能够体现近壁面流体的速度方向,因此,轴向剪切应力为零的位置可以确定主流与泄漏流之间的交界面。已经有学者[12]在跨音速轴流压缩机实验中通过观察机匣壁面的轴向剪切应力分布来确认交界面的位置。图7显示了在机匣壁面处在最高效率点和近失速点的轴向剪切应力分布情况。由图7可知,在流量减小时,轴向剪切应力小于或等于零的范围扩大,叶片前缘处的泄漏流影响范围增大,但没有影响到相邻叶片或平行于叶片前缘。
  文献[13]对离心压缩机的熵变过程进行分析,认为熵变的程度反映了压缩机的运行性能。为了进一步分析流道中的熵变情况,在叶轮流道截取若干个截面,图8为叶片前缘不同位置S3面的熵产分布图,图9为靠近尾缘处S3面的熵产分布图。由图8和图9可知,在近失速点流动情况与最高效率点相差并不多,近失速点甚至有些截面的流动情况反而更好,压缩机近失速点叶轮内的流动并没有发生崩溃,故叶轮并不是引起压缩机失稳的关键部件。
3.3.2 扩压器内流动
  无叶扩压器的进口流动角是扩压器设计和判别流动状态的重要参数,作者分别截取6个不同的径向位置(r/r2=1.02,1.087,1.304,1.522,1.739和1.957),通过计算获得了近失速点与最高效率点的绝对径向速度、绝对切向速度及绝对流动角 (Vr/Vt的正切值),结果见图10。由图10可知,在近失速点,流动的绝对径向速度在80%扩压器高度(定义轮盖处的高度为100%)以下减小,在顶部变化不大,而绝对切向速度在靠近顶部区域增大,扩压器进口的截面变化更为明显。绝对切向、径向速度的变化导致进口流动角减小引发扩压器失稳,最终导致压缩机失稳,扩压器为压缩机失稳的关键部件。

  为了更清楚地了解在不同工况下无叶扩压器内的流动情况,选取在不同流量系数下(定义流量系数为φρVD22 ),分别为0.147、0.138、0.125(最高效率点)、0.113(近失速点)的叶轮出口r/r2为1.02处绝对径向速度及绝对切向速度云图,见图11和图12。由图12显示的绝对切向速度云图知:在r/r2为1.02处靠近叶顶区域,随着流量系数的减小,ab两个区域绝对切向速度变化较为明显,其中,a区随流量增大而影响范围变宽,b区则范围缩小,由此说明随流量减小,靠近轮盖区域绝对切向速度增大。由图13可知,较高绝对切向速度区a区的来流主要在叶中及靠近叶顶区,而较低绝对切向速度区b区的来流则来自轮盘侧及相邻叶片的叶顶间隙。
  该流动域的结构分析为进一步分析叶轮出口流动状态,控制及改善扩压器进口流动提供了理论基础。为拓宽扩压器的稳定性,可采取扩压器进口逆向喷气来减小顶部切向速度,增大扩压器进口流动角。

  为此,通过各种措施改善扩压器进口流动应该可以达到扩稳的目的,从前文的分析结果来看,如果能够改善叶尖泄漏涡的分布或直接通过喷气改变扩压器进口绝对流动角应该对机器的稳定性有利。
4   结论
  本文对带无叶扩压器的离心压缩机内部流动特性、稳定性进行数值和实验研究,得到以下结论:
  1) 由动态信号分析可知,在临近喘振时叶轮进口并无任何先兆,在扩压器进口最先发生压力崩溃;
  2) 叶轮在近失速点与最高效率点的流动状态变化不大,近失速点叶轮流动没有发生崩溃,叶轮不是压缩机失稳的关键部件;
  3) 近失速点扩压器进口切向速度和径向速度改变导致进口流动角发生变化,流动状态发生改变,并最终引发扩压器失稳;
  4) 无叶扩压器为90%转速下该离心压缩机失稳的关键部件。
  为拓宽该离心压缩机的稳定性,可采取措施增加无叶扩压器进口流动角,如扩压器进口逆向喷气等,后续工作将结合扩压器内部采集的动态压力信号和非定常数值模拟,并通过实验来验证所提出扩稳措施的有效性,从而验证分析方法的可靠性及数值预测失稳的可行性。

                参 考 文 献
[1] H. W. Emmons, C. E. Person, H. P. Grant. Compressor Surge and Stall Propagation[J]. Transactions of ASME. 1955, 77(3):453–467.
[2] D. Eckardt. Detailed Flow Investigations within a High Speed Centrifugal Compressor Impeller[J]. ASME Journal of Fluids Engineering.1976,98(3):390–402.
[3] R. C. Dean, Y. Senoo. Rotating Wakes in Vaneless Diffusers[J]. ASME Journal of Basic Engineering. 1960, 82(3):563–574.
[4] H. Krain. Swirling Impeller Flow[J]. ASME Journal of Turbomachinery. 1988, 110(1):122–128.
[5] 程书山,楚武利.叶顶间隙对离心叶轮性能影响的数值模拟[J].风机技术,2010(4):7-8,31.
[6] M. Schleer, R. S. Abhari, Clearance Effects on the Evolution of the Flow in the Vaneless Diffuser of a Centrifugal Compressor at Part Load Condition[R]. ASME Paper GT2006-90083, 2006.
[7] T. Z. Farge,M. W. Johnson,T. M. A. Maksoud,Tip Leakage in a Centrifugal Impeller[J]. ASME Journal of Turbomachinery. 1989, 111(4):243–249.
[8] 么立新,匡中华,刘洋,等.无叶扩压器进口子午形状研究[J].风机技术,2012(6):16-21.
[9] W. Jansen. Steady Fluid Flow in a Radial Vaneless Diffuser[J]. ASME Journal of Basic Engineering.1964, 86(3):607–619.
[10] Y. Senoo, Y. Kinoshita. Influence of Inlet Flow Conditions and Geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow[J]. ASME Journal of Fluids Engineering. 1977, 99(1): 98–103.
[11] Y. Senoo, Y. Kinoshita, M. Ishida. Asymmetric Flow in Vaneless Diffusers of Centrifugal Blowers[J]. ASME Journal of Fluids Engineering.1977,99(1):104–114.
[12] J. D. Cameron, S. T. Barrows, S. C. Morris, J. P. Chen, On the Interface of Casing Measurements in Axial Compressors[R]. ASME Paper GT2008-51371, 2008.
[13] 张富春,董清久,王平.离心压缩机热力过程熵变分析[J].风 机技术,2011(6):29-31,43.

新闻评论评论内容只代表网友观点,与本站立场无关!

  评论人:qdtygwl   打分:85 分  发表时间:2015-8-2 2:18:26
· xp7AYU<ahref="http://pntewksrkspi.com/">pntewksrkspi</a>,[ur...
  评论人:风机盘管   打分:0 分  发表时间:2015-6-28 21:51:59
· 很不错也很漂亮很满意!风机盘管http://www.bjzdqg.com/